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Abstract
We quantize scalar fluctuations in 1+1 dimensions above a classical background
kink. The properties of the effective action for the corresponding classical field
are studied with an exact functional method, alternative to exact Wilsonian
renormalization, where the running parameter is a bare mass and the regulator
of the quantum theory is fixed. We extend this approach, in an appendix, to a
Yukawa interaction in higher dimensions.

PACS numbers: 11.10.−z, 11.10.Kk, 11.15.Tk

1. Introduction

In the context of higher dimensional field theories, topological defects have been used to
explain the localization of matter on four-dimensional branes. If one considers a scalar field
defined on a non-trivial vacuum, with the shape of a kink centered on the brane, it is well known
that massless chiral fermions coupled to the scalar field are localized on the corresponding
brane [1]. In addition, this localization procedure can be used to define chiral fermions on
the lattice, by using a kink-like mass term in the extra dimension [2]. Similar non-trivial
topological effects, including sphalerons in real-time simulations, also lead to the description
of chiral fermions on the lattice [3].

Analytical arguments toward this localization process are given at a classical level, and
we consider here the quantization of scalar fluctuations above the kink, in order to exhibit
non-perturbative properties. This quantization is stable in 1+1 dimensions only, if we consider
the scalar field alone [4], what we will do here, since the corresponding toy model exhibits
the main features we are interested in. In order to explain more specifically our motivations,
though, we set up, in appendix B, the first steps of the generalization to a d+1 dimensional
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Yukawa model, where fermions interact with scalar fluctuations above the kink. The present
treatment does not take into account the collective coordinate corresponding to the translation
invariance of the kink [4], since, in the spirit of the above-mentioned fermion localization
problem, we consider here quantum fluctuations above one specific kink only, centered on
z = 0, and we do not quantize the whole scalar theory, which contains a degenerate family
of kinks. This is done in different papers [5], using canonical quantization. In more than 1+1
dimension, stability of quantum fluctuations necessitates the presence of another field than
the scalar, and, in this context, the BRST (Becchi–Rouet–Stora–Tyutin) quantization of the
nonlinear O(3) model was studied in [6].

The method we use here is an alternative to exact Wilsonian renormalization [7], where,
instead of having fixed bare parameters and a running cut-off, we keep a fixed cut-off and
consider a running bare mass, in the spirit of ‘functional Callan Symanzik equations’ [8]. The
non-perturbative feature of this method, together with the absence of a running cut-off, led
to the derivation of a cut-off-independent dynamical mass generated in the framework of a
Kaluza–Klein model [9]. This method was also used for the description of time-dependent
bosonic string actions [10], where a world sheet cut-off needs to be avoided, and where this
alternative approach leads to new results, by studying the evolution of the quantum theory
with the amplitude of the string tension.

In the present work, the cut-off which regulates the evolution equation for the effective
theory will not appear in the evolution of the dressed parameters, and the logarithmic
divergences expected in 1+1 dimensions are absent from our flows in the bare mass. Indeed,
these flows are obtained after a differentiation with respect to the bare mass, which is equivalent
to inserting an additional propagator in the graphs and therefore has the effect of reducing
their degree of divergence. The physical interpretation of the evolution of the quantum theory
with a bare mass is to control the amplitude of quantum fluctuations: when the bare mass is
large, quantum fluctuations are frozen and the system is almost classical. As the bare mass
decreases, quantum fluctuations gradually appear in the system, which therefore becomes
dressed. A review can be found in [11].

From a technical point of view, this method can be seen as a tool, used to investigate
properties of the quantum theory: the evolution in the bare parameter leads to a functional
partial differential equation, which is then split into a series of differential equations, involving
the dressed parameters which describe the effective theory. The integration of these non-
perturbative differential equations leads to the effective theory, which exhibits the quantum
properties of the system.

Section 2 describes the scalar model we study here, and shows the derivation of the
evolution equation for the quantum theory with the bare mass of the quantum field which
fluctuates above a classical background kink. The evolution equation we arrive at technically
looks like an exact Wilsonian renormalization equation, but is actually very different in essence,
as explained above.

Section 3 derives the evolution of the dressed parameters defining the quantum system,
and discusses different properties of quantum theory. We show there that no odd power of the
classical field is present in the effective action, whereas a cubic interaction is present in the
bare action. We also compare our results to one loop predictions, and give new relations on
the dressed parameters, beyond one-loop, as a consequence of the ressumation provided by
our evolution equations.

Finally, section 4 contains a general discussion on our results, based on symmetry
properties of the quantum theory. Appendix A shows the derivation of the evolution equations
and appendix B displays the first steps on how to generalize the method to a (d+1)-dimensional
Yukawa model.
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2. Model and evolution of the effective theory

The bare action in 1+1 dimensions is

S0 =
∫

dt dz

{
1

2
∂µ�∂µ� − UB(�)

}
, (1)

where z is the space coordinate, and the bare potential UB(�) implements a spontaneous
symmetry breaking:

UB(�) = −m2
0

2
�2 +

λ0

24
�4. (2)

In 1+1 dimensions, the scalar field has mass dimension 0, which leads to an important
renormalization property: all the powers of the field are (classically) relevant operators, and
all the coupling constants have mass dimension 2. As a consequence, the bare potential
(2) is not chosen on the basis of relevance/irrelevance of the interactions, but rather on the
assumption of small amplitude of fluctuations above the kink. This assumption will prove to
be valid which will be seen with the effective theory that is obtained.

The classical equation of motion for the field is

∂µ∂µ� + U
′
B(�) = 0, (3)

where a prime denotes a derivative with respect to �. We concentrate on the kink solution of
equation (3) which depends on z only and reads

�bg(z) = m0

√
6

λ0
tanh(ζ ), (4)

where the dimensionless coordinate ζ is defined as

ζ = m0z√
2

. (5)

We then consider the quantum fluctuations �̃ around �bg and write

�(t, z) = �bg(z) + �̃(t, z). (6)

If we take into account the equation of motion (3), the action depending on the dynamical
variable �̃ is

S =
∫

dt dz

{
1

2
∂µ�̃∂µ�̃−m2

0�̃
2 − λ0

24
�̃4 +

3

2
m2

0[1 − tanh2(ζ )]�̃2 −m0

√
λ0

6
tanh(ζ )�̃3

}
.

(7)

We are interested in studying the quantum theory on the kink background, and we will derive
for this the evolution of the effective action with the bare mass m0. We will therefore start
with the following bare action:

Sξ =
∫

dt dz

{
1

2
∂µ�̃∂µ�̃− ξm2

0�̃
2 − λ0

24
�̃4 +

3

2
m2

0[1 − tanh2(ζ )]�̃2 − g0

6
tanh(ζ )�̃3

}
, (8)

where the dimensionless parameter ξ controls the amplitude of the mass term m2
0�̃

2, and
g0 = m0

√
6λ0. We will show that it is possible to derive an exact evolution equation for the

effective action with ξ . The corresponding flows describe the evolution from ξ � 1, where
the mass term dominates the Lagrangian and the theory is almost classical, to the expected
quantum theory, obtained for ξ = 1.
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We now proceed to the quantization of the system, integrating over the dynamical field
�̃. The partition function is

Zξ =
∫

D[�̃] exp

(
iSξ [�̃] + i

∫
dt dz j�̃

)
= exp(iWξ [j ]), (9)

where j is the source and Wξ is the connected graphs generator functional. The functional
derivative of the latter defines the classical field φ:

δWξ

δj
= 〈�̃〉ξ = φξ

δ2Wξ

δjδj
= −iφξφξ + i〈�̃�̃〉ξ ,

where

〈· · ·〉ξ = 1

Zξ

∫
D[�̃](· · ·) exp

(
iSξ + i

∫
dt dz j�̃

)
. (10)

The effective action �ξ (the proper graphs generator functional) is defined as the Legendre
transform of Wξ : after inverting the relation j → φξ to φ → jξ , one writes

�ξ = Wξ −
∫

dt dz jξφ, (11)

where the source jξ has now to be seen as a functional of φ, parametrized by ξ . The functional
derivatives of � are then

δ�ξ

δφ
= −jξ

δ2�ξ

δφδφ
= −δjξ

δφ
= −(δ2Wξ)

−1
jj .

The evolution equation for Wξ with the parameter ξ is

Ẇξ = −m2
0

∫
dt dz 〈�̃2〉

= −m2
0

∫
dt dz φ2 + im2

0 Tr

{
δ2Wξ

δjδj

}
, (12)

where a dot over a letter represents a derivative with respect to ξ . For the evolution of the
effective action �, one should remember that its independent variables are ξ, φ, such that

�̇ξ = Ẇξ +
∫

dt dz
δWξ

δj
∂ξ j −

∫
dt dz ∂ξ jφ = Ẇξ . (13)

Using the previous results, we finally obtain

�̇ξ + m2
0

∫
dt dz φ2 = −im2

0 Tr

{(
δ2�ξ

δφδφ

)−1
}

. (14)

We stress here that although the right-hand side of equation (14) has the structure of a one-loop
correction, this evolution equation provides a ressumation of all order in h̄, since the effective
action appearing in the trace contains the dressed action and not the bare one. Equation (14) is
therefore a self-consistent equation, in the spirit of a differential Schwinger–Dyson equation,
and is thus non-perturbative.

In order to extract the evolution of the dressed parameters defining the quantum theory,
though, we need to adopt an approximation scheme and we assume, in the framework of the
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gradient expansion, the local potential approximation for �, with the kinetic term frozen to its
classical expression, such that

�ξ =
∫

dt dz

{
1

2
∂µφ∂µφ − Uξ(φ) + [1 − tanh2(ζ )]Vξ (φ) − tanh(ζ )Yξ (φ)

}
, (15)

where Uξ , Vξ , Yξ are dressed potentials which define the quantum theory living on the kink
and depend on the parameter ξ . These potentials will be determined by plugging the ansatz
(15) into the evolution equation (14), and they read, at the tree-level,

U tree(φ) = ξm2
0φ

2 +
λ0

24
φ4

V tree(φ) = 3

2
m2

0φ
2

Y tree(φ) = g0

6
φ3.

(16)

In order to respect the symmetries of the bare action, in what follows we consider even
potentials Uξ , Vξ and an odd potential Yξ

3. Evolution of the dressed parameters

In order to derive the evolution of the dressed parameters, we have to compute the trace
appearing in the evolution equation (14), for a given configuration φ. Because of the symmetry
of the function tanh(ζ ), a constant configuration for φ is not appropriate, as in such a case the
derivative Ẏξ does not appear on the left-hand side of equation (14). The appropriate choice
here is the step-like configuration

φstep = sign(z)φ0, (17)

where φ0 is a constant. This configuration has a singular kinetic term, but the corresponding
singularity is ξ -independent in the framework of the gradient expansion (15), and therefore
has no influence on the evolution in ξ . With such a configuration, the left-hand side of the
evolution equation (14) is

LT
[
m2

0φ
2
0 − U̇ξ (φ0) − Ẏξ (φ0)

]
+

T

m0
[2V̇ξ (φ0) + ln 2Ẏξ (φ0)], (18)

where T is the length of the time dimension and L is the length of the space dimension.
These lengths being independent, one can independently identify in equation (14) the terms
proportional to T and the terms proportional to LT .

The second derivative of the effective action is, for the configuration (17),

δ2�ξ

δφ1δφ2
= −{∂µ∂µ + U

′′
ξ (φ0)}δ(t1 − t2)δ(z1 − z2)

+ {[1 − tanh2(ζ )]V
′′
ξ (φ0) − |tanh(ζ )|Y ′′

ξ (φ0)}δ(t1 − t2)δ(z1 − z2). (19)

We then need the Fourier transform of the functions |tanh(ζ )| and 1 − tanh2(ζ ), and we find
in appendix A ∫ ∞

−∞
dz e−ikz[1 − tanh2(ζ )] � 4

m2
0

k3
sin

(
k

m0

)
− 4

m0

k2
cos

(
k

m0

)
∫ ∞

−∞
dz e−ikz|tanh(ζ )| � 2πδ(k) + 2

m0

k2

[
cos

(
k

m0

)
− 1

]
.

(20)
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We are interested in the limit of a strongly localized topological defect, and therefore consider
the first order in 1/m0 only, where the previous Fourier transforms are∫ ∞

−∞
dz e−ikz[1 − tanh2(ζ )] � 4

3m0∫ ∞

−∞
dz e−ikz|tanh(ζ )| � 2πδ(k) − 1

m0
.

(21)

The Fourier transform of the second functional derivative (19) is then

δ2�ξ

δφ1δφ2
� {

ω2
1 − k2

1 − U
′′
ξ (φ0) − Y

′′
ξ (φ0)

}
2πδ(ω1 + ω2)2πδ(k1 + k2)

+
1

3m0
{4V

′′
ξ (φ0) + 3Y

′′
ξ (φ0)}2πδ(ω1 + ω2), (22)

where we observe that, since translation invariance is broken in the space dimension, there is
no conservation of momentum k in this direction. In what follows, we give the main steps of
the derivations only, and the details can be found in appendix A.

3.1. Evolution of the potentials

For the step-like configuration (17), we evaluate the inverse of the second derivative (22) using
the expansion

(A + B)−1 = A−1 − A−1BA−1 + A−1BA−1BA−1 + · · ·, (23)

where A is proportional to δ(ω1 + ω2)δ(k1 + k2) and is thus diagonal and B is proportional to
δ(ω1 + ω2) only and is thus off-diagonal in the space dimension. In the previous expansion,
the small parameter is k/m0, where k is a typical IR momentum. The identification of the
terms proportional to LT in the trace of equation (14) then gives

U̇ξ (φ0) + Ẏξ (φ0) = m2
0φ

2
0 +

m2
0

4π
ln

(
1 +

�2

U
′′
ξ (φ0) + Y

′′
ξ (φ0)

)
, (24)

where a prime denotes a derivative with respect to the constant configuration φ0 and � is the
UV cut-off. The latter will actually not appear in the evolution equations for the parameters,
since the expansion of equation (24) in powers of φ0 leads to a field-independent divergence.
We then choose the potentials such that Uξ(0) = 0, Yξ (0) = 0, and subtract the corresponding
evolution equation from equation (24) to obtain, in the limit � → ∞,

U̇ξ (φ0) + Ẏξ (φ0) = m2
0φ

2
0 +

m2
0

4π
ln

(
U

′′
ξ (0) + Y

′′
ξ (0)

U
′′
ξ (φ0) + Y

′′
ξ (φ0)

)
. (25)

The cut-off does not appear in our evolution equation as a consequence of the derivative with
respect to a bare mass term, whereas we could expect logarithmic divergences in a (1+1)-
dimensional field theory. The projection of equation (25) on the subspace of even functions
of φ0 gives the evolution of Uξ and its projection on the subspace of odd functions gives the
evolution of Yξ .

The evolution equations obtained after identification of the terms proportional to T is

V̇ξ (φ0) +
ln 2

2
Ẏξ (φ0) = − m2

0

24π

(
4V

′′
ξ (φ0) + 3Y

′′
ξ (φ0)

U
′′
ξ (φ0) + Y

′′
ξ (φ0)

− 4V
′′
ξ (0) + 3Y

′′
ξ (0)

U
′′
ξ (0) + Y

′′
ξ (0)

)
, (26)

where the constant term has been chosen so as to respect Vξ (0) = 0. In this latter equation also,
the projection on the subspace of even functions gives the evolution of Vξ and its projection
on the subspace of odd functions gives the evolution of Yξ .

6
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As is clear from equations (25), (26), a consistent solution for the potentials can be found
only if Yξ = 0: these two evolution equations cannot give identical evolutions for Yξ . As a
consequence, no odd function of the field appears in the effective theory. This property will
be discussed in the last section, where we show that it is a consequence of symmetries of the
quantum theory.

Finally, the effective action is

�ξ =
∫

dt dz

{
1

2
∂µφ∂µφ − Uξ(φ) + [1 − tanh2(ζ )]Vξ (φ)

}
, (27)

where the dressed potentials Uξ and Vξ satisfy the evolution equations

U̇ξ (φ0) = m2
0φ

2
0 +

m2
0

4π
ln

(
U

′′
ξ (0)

U
′′
ξ (φ0)

)
V̇ξ (φ0) = −m2

0

6π

(
V

′′
ξ (φ0)

U
′′
ξ (φ0)

− V
′′
ξ (0)

U
′′
ξ (0)

)
. (28)

We observe that, in the framework of the gradient expansion (15), the evolution equation for
Uξ is independent of Vξ . A further step in the gradient expansion would consist in taking
into account quantum fluctuations in the kinetic term and write a general operator of the
form Zξ(φ)∂µφ∂µφ in the effective action. The function Zξ would then couple the evolution
equations for Uξ and Vξ .

Finally, we note that taking into account additional terms in expansion (23) would not
influence the evolution of the effective potential Uξ , but would add corrections of higher orders
in 1/m0 to the evolution of Vξ .

3.2. Truncation of the dressed potentials

Quantum fluctuations generate all the powers of field in the dressed potentials Uξ , Vξ . As
discussed already, no operator is irrelevant here, in the Wilsonian sense, and therefore in
principle one should take into account all the powers of φ. But if we assume small quantum
fluctuations, we then consider the following truncation of the dressed potentials:

Uξ(φ0) = M2

2
φ2

0 +
λ

24
φ4

0 +
β

6!
φ6

0 Vξ (φ0) = v1

2
φ2

0 +
v2

24
φ4

0 +
v3

6!
φ6

0 , (29)

where the parameters M2, λ, β, v1, v2, v3 depend on ξ . This truncation takes into account the
interactions which appear in the bare theory as well as the lowest interaction

(
φ6

0

)
generated

by quantum fluctuations. An expansion in powers of φ0 in the evolution equation (28) for Uξ

gives, after identification of the different powers,

order φ2
0 : MṀ = m2

0 − λm2
0

8πM2

order φ4
0 : λ̇ = 3m2

0

4πM2

(
λ2

M2
− β

3

)

order φ6
0 : β̇ = 15λm2

0

2πM4

(
β

2
− λ2

M2

)
.

(30)

The identification of the powers of φ0 in the evolution equation (28) for Vξ gives

order φ2
0 : v̇1 = m2

0

6πM2

(
λv1

M2
− v2

)

order φ4
0 : v̇2 = − m2

0

πM2

(
λ2v1

M4
− βv1

6M2
− λv2

M2
+

v3

6

)

order φ6
0 : v̇3 = −15m2

0

πM4

[
λv1

M2

(
β

2
− λ2

M2

)
+ v2

(
λ2

M2
− β

6

)
− λv3

6

]
.

(31)

7
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If one desires to obtain the evolution of the dressed parameters with ξ , it is possible to solve
equations (30), (31) numerically, but we give in what follows approximate analytical solutions,
which contain the essential properties of the quantum theory.

3.3. One-loop approximation

We study here the one-loop approximation of the non-perturbative evolution equations for
M,λ, β. For this, we note that the right-hand side of equation (14) contains the quantum
corrections, such that the one-loop approximation is obtained by replacing on the right-hand
side the dressed parameters by the bare ones: M → √

2ξm0, λ → λ0 and β → 0. We then
obtain for the one-loop parameters M(1), λ(1), β(1)

M(1)Ṁ(1) = m2
0 − λ0

16πξ

λ̇(1) = 3λ2
0

16πξ 2m2
0

β̇(1) = − 15λ3
0

16πξ 3m4
0

.

(32)

It is interesting to compare these results with usual Feynman diagrams, obtained from the bare
theory ∫

dt dz

{
1

2
∂µφ∂µφ − ξm2

0φ
2 − λ0

24
φ4

}
, (33)

i.e. the initial bare theory without the z-dependent quadratic and cubic terms.
The one-loop correction to the parameter M2 is generated by the interaction φ4 which is

represented by the tadpole diagram

(M(1))2 − 2ξm2
0 = iλ0

2

∫
d2p

(2π)2

1

p2 − 2ξm2
0

= λ0

2

2

(2π)2

∫ �

0

qdq

q2 + 2ξm2
0

= λ0

8π
ln

(
1 +

�2

2ξm2
0

)
, (34)

where the factor 1/2 takes into account the symmetry factor of the graph. It can be checked
that the derivative of the latter result with respect to ξ indeed gives the expected expression
(32) for ∂ξ

[
(M(1))2 − 2ξm2

0

] = 2
(
MṀ(1) − m2

0

)
, in the limit � → ∞.

The one-loop correction to the coupling λ is given by

λ(1) − λ0 = 3iλ2
0

2

∫
d2p

(2π)2

1(
p2 − 2ξm2

0

)2

= −3λ2
0

2

2

(2π)2

∫ ∞

0

qdq(
q2 + 2ξm2

0

)2

= − 3λ2
0

16πξm2
0

, (35)

where 3λ0/2 in the first line takes into account the symmetry factor and the three permutations
of vanishing incoming momenta. The derivative of the latter result with respect to ξ indeed
gives the above expression (32) for λ̇(1).

8
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The coupling β is generated by quantum fluctuations, and its one-loop expression is,
taking into account the symmetry and permutation factors,

β(1) = 6!

8 × 6
(iλ0)

3
∫

d2p

(2π)2

1(
p2 − 2ξm2

0

)3

= 15λ3
0

2

(2π)2

∫ ∞

0

qdq(
q2 + 2ξm2

0

)3

= 15λ3
0

32πξ 2m4
0

. (36)

The derivative of the latter result with respect to ξ indeed gives the above expression (32)
for β̇(1).

We checked here that our non-perturbative evolution equations (30) are consistent, at
one loop, with usual Feynman graphs. This feature is a consequence of the fact that, in the
framework of the gradient expansion (15), the evolution of Uξ is independent of the evolution
of Vξ . Beyond one loop, the gradient expansion does not give the same results than the loop
expansion, as it is based on an expansion in powers of the momentum.

3.4. Approximate analytical solution

We are interested here in approximate analytical solutions for the parameters λ and v1.
An approximate solution for λ given in equations (30) can be obtained by keeping the

bare values for the other parameters: M → √
2ξm0 and β → 0, in which case the equation

for λ reads

λ̇

λ2
= 3

16πξ 2m2
0

. (37)

We see that, as quantum fluctuations arise (ξ decreases), λ decreases (λ̇ > 0), which was
expected, as a scalar self-coupling is known to decrease in the IR. If we define the renormalized
coupling λR = λ(1), the solution of equation (37) can easily be found and reads

λ(ξ) = λR

[
1 +

3λR

16πm2
0

(
1

ξ
− 1

)]−1

. (38)

In the spirit of the present functional method, the bare coupling λ0 should be found in the limit
ξ → ∞, which leads to the following expression for the dressed coupling in terms of the bare
coupling:

λR = λ0

(
1 +

3λ0

16πm2
0

)−1

. (39)

Using a similar approximation in the evolution equation for the parameter v1, i.e. M → √
2ξm0

and v2 → 0, we find the following evolution for v1:

v̇1

v1
= λ

24πξ 2m2
0

, (40)

where λ is given by equation (38). The integration of this equation then gives

v1(ξ) = 3m2
R

[
1 +

3λR

16πm2
0

(
1

ξ
− 1

)]−2/9

, (41)

9
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where we define 3m2
R = v1(1). As previously, a relation between the renormalized parameters

λR and m2
R can be obtained, by taking the limit ξ → ∞ in the previous equation, with

v1 → 3m2
0, such that

m2
R = m2

0

(
1 − 3λR

16πm2
0

)2/9

. (42)

From relation (39), we then obtain the following expression for m2
R in terms of the bare

parameters only:

m2
R = m2

0

(
16πm2

0

3λ0 + 16πm2
0

)2/9

. (43)

Equations (39), (43) consist in a ressumation in all orders in h̄ and are derived in the limit of
a highly localized topological defect, m2

0 � λ0.

4. Discussion

We now discuss the vanishing of the dressed term tanh(ζ )Yξ (φ) in the effective action, as a
consequence of a discrete symmetry of the theory.

In this work, we considered the quantization of fluctuations above the kink �bg given in
equation (4), but the classical equation of motion (3) has actually two kink solutions centered
on z = 0, which are ±�bg. We now discuss the symmetry of the quantum theory under the
transformation �bg → −�bg, and we denote by an upper indice (±) the different quantities
defined respectively on the backgrounds ±�bg. We note here that the vacuum of the theory,
the constant configuration �0 = m0

√
6/λ0, does not respect the symmetry �0 → −�0, since

this symmetry is spontaneously broken.
The bare action corresponding to the background −�bg is

S
(−)
ξ [φ] =

∫
dt dz

{
1

2
∂µ�̃∂µ�̃− ξm2

0�̃
2 − λ0

24
�̃4 +

3

2
m2

0[1 − tanh2(ζ )]�̃2 +
g0

6
tanh(ζ )�̃3

}

= S
(+)
ξ [ψ], (44)

where ψ(t, z) = φ(t,−z). The source term can then be written as∫
dt dz jφ =

∫
dt dz gψ, (45)

where g(t, z) = j (t,−z), such that the partition function is

Z
(−)
ξ [j ] =

∫
D[φ] exp

{
iS(−)[φ] + i

∫
dt dz jφ

}

=
∫

D[ψ] exp

{
iS(+)[ψ] + i

∫
dt dz gψ

}
= Z

(+)
ξ [g]. (46)

The classical field corresponding to the background −�bg is

φ(−)
c (t, z) = δW

(−)
ξ

δj (t, z)
=

∫
ds dy

δW
(+)
ξ

δg(s, y)

δg(s, y)

δj (t, z)

=
∫

ds dy
δW

(+)
ξ

δg(s, y)
δ(y + z)δ(s − t) = δW

(+)
ξ

δg(t,−z)
= δW

(+)
ξ

δj (t, z)

= φ(+)
c (t, z),

10
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and is therefore independent of the sign of the background: φ(−)
c = φ(+)

c . When defining the
Legendre transform �ξ , we inverse the relation j → φc, such that the source is now a function
of the background, and therefore j (−) = j (+). The effective action is then

�
(−)
ξ [φc] = Wξ [j (−)] −

∫
dt dz j (−)φc

= Wξ [j (+)] −
∫

dt dz j (+)φc

= �
(+)
ξ [φc]. (47)

As a consequence, the effective action does not depend on the sign of the background, such
that the dressed term tanh(ζ )Yξ (φc) in the effective action (15) must vanish, as it should
satisfy −Yξ = Yξ . The corresponding term in the bare action does not survive quantization.
It is interesting to note that the non-perturbative method presented here allows us to see the
vanishing of the dressed potential Yξ , using equations (25), (26), which means that quantum
fluctuations are strong enough to cancel the corresponding term present in the bare action.
This could not be obtained within a perturbative approach, but only within a method using a
self-consistent equation as equation (14).

The next step in this study consists in including fermions coupled to the scalar field
fluctuating over the background kink. From the results obtained here, we can expect a usual
Yukawa coupling φψψ to be relevant to the problem, or more generally a coupling of the
form f (φ)ψψ , without an explicit z-dependence. As explained in appendix B, the evolution
equation for the effective action �ξ with ξ is then obtained in the same way, with more involved
calculations though, as the second derivative δ(2)� is then a 3 × 3 matrix, with rows φ,ψ,ψ ,
and the computation of the trace in equation (14) involves the inverse of this matrix. In higher
dimensions, the method presented here is of course valid and can include any other matter
field. Also, it can be extended to higher symmetries and deal with gauge fields. As far as
supersymmetry is concerned, the use of the superfield formalism necessitates a modification of
the evolution equation (14), which takes into account the chirality constraint of the superfields.

Finally, we emphasize the advantage of the present approach, in 1+1 dimensions,
compared to the Wilsonian approach: we were able to generate non-perturbative flows without
referring to a running cut-off, as no cut-off appears in the evolution for the dressed potentials,
and the integration of the corresponding flows led us to cut-off-free relations between bare
and dressed parameters.
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Appendix A. Computation of the trace

For the step-like configuration φ = sign(z)φ0, the second derivative of the effective action is

δ2�ξ

δφ1δφ2
= {−∂µ∂µ − U

′′
ξ (φ0) + [1 − tanh2(ζ )]V

′′
ξ (φ0)− |tanh(ζ )|Y ′′

ξ (φ0)}δ(t1 − t2)δ(z1 − z2),

(A.1)

and therefore we need the Fourier transform of 1 − tanh2(ζ ) and |tanh(ζ )|. For this, we
approximate the function tanh(ζ ) by ζ in the interval [−1; 1] and by 0 outside this interval.

11
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This approximation captures the essential features of the kink, and leads, for the Fourier
transform of 1 − tanh2(ζ ), to∫ ∞

−∞
dz e−ikz[1 − tanh2(ζ )] �

∫ 1/m0

−1/m0

dz e−ikz(1 − ζ 2)

= 4
m2

0

k3
sin

(
k

m0

)
− 4

m0

k2
cos

(
k

m0

)
. (A.2)

The same approximation leads, for the Fourier transform of |tanh(ζ )|, to∫ ∞

−∞
dz e−ikz|tanh(ζ )| �

∫ ∞

−∞
dz e−ikz +

∫ 1/m0

−1/m0

dz e−ikz(|ζ | − 1)

= 2πδ(k) + 2
m0

k2

[
cos

(
k

m0

)
− 1

]
. (A.3)

Since we are interested in the limit of a highly localized topological defect, we consider the
situation where m0 � |k|, which gives∫ ∞

−∞
dz e−ikz[1 − tanh2(ζ )] � 4

3m0
+ O

(
k2

m3
0

)
∫ ∞

−∞
dz e−ikz|tanh(ζ )| � 2πδ(k) − 1

m0
+ O

(
k2

m3
0

)
.

The inverse (δ2�)−1 is taken as

(A + B)−1 = A−1 − A−1BA−1 + A−1BA−1BA−1 + · · · , (A.4)

where A is proportional to δ(ω1 + ω2)δ(k1 + k2) and is thus diagonal and B is proportional to
δ(ω1 + ω2) only and is thus off-diagonal in the space dimension. We then obtain, taking into
account the first order in B in expansion (A.4),(

δ2�ξ

δφ1δφ2

)−1

� 2πδ(ω1 + ω2)2πδ(k1 + k2)

ω2
1 − k2

1 − U
′′
ξ (φ0) − Y

′′
ξ (φ0)

− (3m0)
−1[4V

′′
ξ (φ0) + 3Y

′′
ξ (φ0)]2πδ(ω1 + ω2)[

ω2
1 − k2

1 − U
′′
ξ (φ0) − Y

′′
ξ (φ0)

][
ω2

2 − k2
2 − U

′′
ξ (φ0) − Y

′′
ξ (φ0)

] . (A.5)

The term proportional to LT in the trace of equation (14) is

LT

∫
dω

2π

dk

2π

1

ω2 − k2 − U
′′
ξ (φ0) − Y

′′
ξ (φ0)

= −iLT
2

(2π)2

∫ �

0

qdq

q2 + U
′′
ξ (φ0) + Y

′′
ξ (φ0)

= −LT
i

4π
ln

(
1 +

�2

U
′′
ξ (φ0) + Y

′′
ξ (φ0)

)
, (A.6)

where q is the Euclidean 2-momentum and 2 = 2π is the solid angle in dimension 2.
The term proportional to T only in the trace of equation (14) is

−4V
′′
ξ (φ0) + 3Y

′′
ξ (φ0)

3m0
T

∫
dω

2π

dk

2π

1

(ω2 − k2 − U
′′
ξ (φ0) − Y

′′
ξ (φ0))2

= −4V
′′
ξ (φ0) + 3Y

′′
ξ (φ0)

3m0
T

2

(2π)2

∫ ∞

0

qdq

(q2 + U
′′
ξ (φ0) + Y

′′
ξ (φ0))2

= −iT

12πm0

4V
′′
ξ (φ0) + 3Y

′′
ξ (φ0)

U
′′
ξ (φ0) + Y

′′
ξ (φ0)

. (A.7)

12
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The left-hand side of equation (14) is, for the step-like configuration,

LT
[
m2

0φ
2
0 − U̇ξ (φ0) − Ẏξ (φ0)

]
+

T

m0
[2V̇ξ (φ0) + ln 2Ẏξ (φ0)], (A.8)

and, together with equations (A.6), (A.7), we obtain for the evolution of the dressed potentials

U̇ξ (φ0) + Ẏξ (φ0) = m2
0φ

2
0 +

m2
0

4π
ln

(
1 +

�2

U
′′
ξ (φ0) + Y

′′
ξ (φ0)

)

V̇ξ (φ0) +
ln 2

2
Ẏξ (φ0) = − m2

0

24π

4V
′′
ξ (φ0) + 3Y

′′
ξ (φ0)

U
′′
ξ (φ0) + Y

′′
ξ (φ0)

.

(A.9)

Appendix B. Extension to a Yukawa interaction

We give here the main steps of the extension of the previous method to a Yukawa interaction
in d + 1 dimensions, where the kink expands in the extra dimension, with coordinate z. For
d � 4, the theory is not renormalizable, and we consider it an effective theory, valid up to an
energy scale �, which is our cut-off.

The bare action is, for massless fermions,

S0 =
∫

ddx dz

{
i�∂/� +

1

2
∂µ�∂µ� − η0��� − UB(�)

}
, (B.1)

where the scalar potential UB(�) is given in equation (2). The fermion field having no
expectation value, the kink configuration is the same as in equation (4), and the action to
quantize is

Sξ =
∫

ddx dz

{
i�∂/� − η0�bg(ζ )�� − η0�̃�� +

1

2
∂µ�̃∂µ�̃ − ξm2

0�̃
2 − λ0

24
�̃4

+
3

2
m2

0[1 − tanh2(ζ )]�̃2 − g0

6
tanh(ζ )�̃3

}
, (B.2)

where �̃ represent the fluctuations above the classical kink. In the previous expression, the
z-dependent mass term η0�bg(ζ )�� for the fermion is responsible for the fermion localization
on the brane z = 0, as discussed in [1].

The partition function, functional of the sources j, η, η, is

Zξ =
∫

D[�̃,�,�] exp{iSξ [�̃,�,�] + i
∫

ddx dz(j�̃ + η� + �η)}
= exp(iWξ [j, η, η]), (B.3)

from which the classical fields (φ,ψ,ψ) are defined:

δWξ

δj
= φ

δWξ

δη
= ψ

δWξ

δη
= −ψ. (B.4)

The proper graphs generator functional of the classical fields φ,ψ,ψ is defined as the Legendre
transform of W , after inverting the relations (j, η, η) → (φξ , ψξ , ψξ ) to (φ,ψ,ψ) →
(jξ , ηξ , ηξ ):

�ξ [φ,ψ,ψ] = Wξ [j, η, η] −
∫

ddx dz(jξφ + ηξψ + ψηξ ), (B.5)
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and its functional derivatives are
δ�ξ

δφ
= −jξ

δ�ξ

δψ
= −ηξ

δ�ξ

δψ
= ηξ . (B.6)

The evolution equation for �ξ with ξ is derived in the same way as was done in 1+1 dimensions
and reads

�̇ξ + m2
0

∫
ddx dz φ2 = −im2

0Tr
{
(δ2�ξ)

−1
φφ

}
, (B.7)

but this time (δ2�ξ)
−1
φφ is the φφ component of the inverse of the matrix

δ2�ξ =

⎛
⎜⎜⎜⎝

δ2�

δψδψ

δ2�

δψδψ

δ2�

δψδφ

δ2�
δψδψ

δ2�

δψδψ

δ2�
δψδφ

δ2�
δφδψ

δ2�

δφδψ

δ2�
δφδφ

⎞
⎟⎟⎟⎠ . (B.8)

Note that the components δ2�ψψ and δ2�ψψ do not vanish in general, as quantum fluctuations
generate 4-fermion interactions and higher powers of ψψ . Also, compared to the 1+1
dimensional model, the trace in equation (B.7) contains divergences, such that the cut-off
� will appear in the final equations.

In order to take into account fermion localization, and the symmetries of the system,
we propose here the following gradient expansion, where we disregard higher order fermion
interactions and wavefunction renormalization:

�ξ =
∫

ddx dz

{
1

2
∂µφ∂µφ − U 1

ξ (φ)ψψ − U 2
ξ (φ)

+ [1 − tanh2(ζ )]
[
iψ∂/ψ + V 1

ξ (φ)ψψ + V 2
ξ (φ)

]}
. (B.9)

In the previous expression, fermion localization is implemented via the ζ -dependence fermion
kinetic term: away from the brane, for ζ 	= 0, the fermion propagation is exponentially
damped. The consistency of this ansatz for the functional dependence of �ξ has to be checked
when computing the trace in equation (B.7) and following the evolution of �ξ with ξ , which
leads to the evolution of the scalar potentials U

1,2
ξ (φ) and V

1,2
ξ (φ).

An interesting study is then to look for a possible mass generated dynamically, on the
brane, for the would-be massless fermion. This can be investigated using the present method,
since it is based on a self-consistent equation, as was already done in the Kaluza–Klein
framework [9]. In the present context, the fermion dynamical mass, if there is one, is
mdyn = U 1

ξ (0) − V 1
ξ (0).
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